
Coding Standards

Lezioni alla pari

April 19, 2020

Team Members

Ovidiu Andrioaia

David Cirdan

Luciano Mateias

Zhiyang Xia

Document Control

Change History

Revision Change Date Description of changes

V1.0 04/19/2020 Initial release

Document storage

This document is stored in the project's GIT repository at:

https://github.com/KilliKrate/Software-Documentation-

G6/blob/master/docs/Coding%20Standards/index.md

Document Owner

Group 6 is responsible for developing and maintaining this document.

Table of contents

Introduction

Enforcing the Standards

Code Quality Tools

Code Reviews

Whitespaces

Indentation

Control Structures

Semicolons

Naming Conventions

Functions and Variables

Classes and Constructors

Comments

https://github.com/KilliKrate/Software-Documentation-G6/blob/master/docs/Coding%20Standards/index.md

Variables

Variable Declaration

Declaration Location

Unused Variables

Arrays

Single-line Arrays

Multi-line-arrays

Strings

Quotes

Concatenation

Comparison Operators & Equality

Comparison Operators

Equality

Functions

Function Declaration

Function Parameters

Arrow Functions

Arrow Functions vs Functions

Implicit Returns

Style and Consistency Considerations

Classes

Class Declaration

Methods & Method Chaining

Constructors

Static Methods

Objects

Object Initialization

Object Shorthands

Python

Introduction

The "Lezioni alla Pari" coding standards aim to illustrate the way forward for

implementing features and changes to the Javascript codebase. Every new piece of code

committed the Github repository must strictly adhere to the following rules, since all

the code in this code-base should look like a single person typed it, no matter the

size of the team. These rules must be followed if you also are interested in

collaborating with the team, by implementing changes and features to further develop

the project.

This document guarantees a basic level of quality for all the code base, which should

be, in order of importance:

Reliable

Maintainable

Efficient

Efficiency comes last, as the most important characteristic is for the code to be

easily readable, understandable, and modifiable by all members participating to the

project.

Back to Top

Enforcing the standards

Code quality tools

In order to guarantee that the coding standards are respected, we require developers

to use the following tools:

ESLint plugin for VS Code OR ESLint Node Module

Beautify plugin for VS Code OR js-beautify Node Module

Code reviews

After the rules have been agreed upon, issues not covered by the use of the

aforementioned tools can be resolved through various tecniques of code review. We will

list the two main methods used by our team in order to guarantee code standard

compliance:

Peer review

Another team member reviews the code to ensure that the code follows the

standards and meets the requirements. The code review will be conducted in

pairs and in our case, always by the same pair, because of the team size: the

two back-end devs will judge each other, and the front-end devs will do the

same

Architect review

The architect of the team must review the core modules of the project to ensure

they adhere to the architecture and design specifications, so that the code and

algorithm therein strictly follow them.

Back to Top

Whitespaces

Indentation

All code MUST be indented using two (2) space charachters, the code MUST NOT indent

using tab charachters or trailing whitespaces. This can be reinforced by using an IDE

with appropriate indentation settings. Alternatively, ESLint will throw an error if

use of whitespaces is not consistent.

// bad

if (condition) {

 doSomething();

}

// good

if (condition) {

 doSomething();

}

Lastly, lines SHOULD generally be no longer than 80 charachters, and MUST NOT not

exceed 100. The only exceptions are Strings and Regex literals.

Control Structures

Control structures MUST always use braces, even in cases where they are not required,

for the sake of readability. Control structures MUST have a space between the control

keyword and the condition, as to differentiate them from function calls, to increase

readability and to decrease the likelihood of logic errors when new lines are added.

// bad

if(condition) doSomething();

while(condition) iterating++;

for(var i=0;i<100;i++) someIterativeFn();

// good

if (condition) {

 doSomething();

}

while (condition) {

 iterating++;

}

for (var i = 0; i < 100; i++) {

 someIterativeFn();

}

Example if statement:

if (condition1 || condition2) {

 action1();

}

else if (condition3 && condition4) {

 action2();

}

else {

 defaultAction();

}

Example switch statement:

switch (condition) {

 case 1:

 action1();

 break;

 case 2:

 action2();

 break;

 default:

 defaultAction();

Example try/catch statement:

try {

 // Statements...

}

catch (error) {

 // Error handling...

}

finally {

 // Statements...

}

Function Declarations

The function keyword MUST be followed by one space. Named functions MUST NOT have a

space between the function name and the following left parenthesis Optional arguments

(using default values) SHOULD be defined at the end of the function signature. Every

function SHOULD attempt to return a meaningful value.

// bad

function funStuff (text) {

 alert(`${text} is very fun`);

}

// good

function funStuff(text) {

 alert(`${text} is very fun`);

 return true;

}

Function Calls

Functions MUST be called with no spaces between the function name and its parameters.

There MUST be one space between commas and each parameter, and there MUST NOT be a

space between the last parameter, the closing parenthesis, and the semicolon.

// bad

var foobar=foo (bar,baz,quux) ;

// good

var foobar = foo(bar, baz, quux);

Back to Top

Semicolons

Although Javascript allows for optional semi-colons, all code in the "Lezioni alla

Pari" repository MUST be followed by semi-colons. Therefore, all statements (except

for, function, if, switch, try, while and possibly other control structures) MUST be

followed by a semi-colon. This is in order to avoid errors in the code, where ASI

fails to fill them in correctly.

// bad - raises exception

const luke = {}

const leia = {}

[luke, leia].forEach((jedi) => jedi.father = 'vader')

// good

const luke = {};

const leia = {};

[luke, leia].forEach((jedi) => {

 jedi.father = 'vader';

});

Back to Top

Naming Conventions

Functions and Variables

All variables and functions MUST use camelCase, with the exception of classes and

constructors. The first letter of the word MUST be lowercase, while all the first

letters of subsequent words MUST be uppercased. There MUST NOT be underscores between

the words, as that would be snake_case.

// bad

function q(s) {

 return document.querySelectorAll(s);

}

var i,a=[],els=q("#foo");

for(i=0;i<els.length;i++){a.push(els[i]);}

// good

function query(selector) {

 return document.querySelectorAll(selector);

}

var idx = 0,

 elements = [],

 matches = query("#foo"),

 length = matches.length;

for (; idx < length; idx++) {

 elements.push(matches[idx]);

}

Classes and Constructors

As mentioned above, there is an exception in the case of classes and constructors. The

programmer, in this situation, MUST use PascalCase.

// bad

function user(options) {

 this.name = options.name;

}

const bad = new user({

 name: 'nope',

});

// good

class User {

 constructor(options) {

 this.name = options.name;

 }

}

const good = new User({

 name: 'yup',

});

Back to Top

Comments

JSDoc Standard

Single line and multiline comments are not only allowed, but recommended. The team

MUST adopt the standards of JSDoc 3 for the proper documentation of code. Following

those rules, all files, classes and functions MUST be documented. For more in-depth

perspectives on code documentation, you should head over to the official JSDoc

Documentation

Non-JSDoc Comments

One should note that comments not adherent to the JSDoc standard are recommended where

files, functions, classes are not concerned. In particular, when one is explaining the

logic surrounding an algorithm, one MUST write comments so that who tries to

comprehend a particularly complex piece of logic can understand it even without

reading it directly.

https://jsdoc.app/
https://jsdoc.app/

Generally speaking, all single line comments MUST use // , placed on a newline above

the subject of the comment. An empty line MUST be inserted before the comment unless

it's on the first line of a block.

// bad

const active = true; // is current tab

// good

// is current tab

const active = true;

// bad

function getType() {

 console.log('fetching type...');

 // set the default type to 'no type'

 const type = this.type || 'no type';

 return type;

}

// good

function getType() {

 console.log('fetching type...');

 // set the default type to 'no type'

 const type = this.type || 'no type';

 return type;

}

Lastly, all multiline comments MUST use /* ... */ . Multiline comments MUST NOT use

// , as that is reserved for single-line comments.

// bad

// make() returns a new element

// based on the passed in tag name

//

// @param {String} tag

// @return {Element} element

function make(tag) {

 // ...

 return element;

}

// good

/**

 * make() returns a new element

 * based on the passed-in tag name

 *

 * @param {String} tag

 * @return {Element} element

 */

function make(tag) {

 // ...

 return element;

}

Back to Top

Variables

Variable Declaration

Variables MUST be declared using the let or const keywords. The var keyword MUST

NOT be used. Using var might result in variable scoper errors, which are often

confusing and sometimes result in global variables. Variables MUST be declared on

separate lines, by repeating the let or const keyword.

// bad

const items = getItems(),

 goSportsTeam = true,

 dragonball = 'z';

let lambSauceLocation = getLambSauce(),

 lambSauceFound = false,

 hotel = 'trivago';

// good

const items = getItems();

const goSportsTeam = true;

const dragonball = 'z';

let lambSauceLocation = getLambSauce();

let lambSauceFound = false;

let hotel = 'trivago';

Declaration Location

All variables MUST be declared at a sensible location in their respective scope, which

is inside the curly braces that contain them. Forget any previous consideration about

scope, since this is where var is fundamentally different let or const : The former

is function-scoped, so placing them at the beginning of the function was the most

sensible approach, while the latter are block-scoped, meaning they exist only in their

block. Most often, sensible declaration choices will avoid things like unnecessary

function calls.

// bad - unnecessary function call

function checkName(hasName) {

 const name = getName();

 if (hasName === 'test') {

 return false;

 }

 if (name === 'test') {

 this.setName('');

 return false;

 }

 return name;

}

// good

function checkName(hasName) {

 if (hasName === 'test') {

 return false;

 }

 const name = getName();

 if (name === 'test') {

 this.setName('');

 return false;

 }

 return name;

}

Unused Variables

Lastly, you SHOULD try to avoid creating unused variables: variables created but never

read, or read for the sole purpose of modifying them (like in an increment) MUST NOT

be present in the code. This also includes unused function arguments. ESLint will

prevent this in some cases, but try to avoid it yourself.

Back to Top

Arrays

Single-line Arrays

Arrays MUST be formatted with one space separating each element, right after the comma

// bad

let someArray = ['hello','world'];

// good

let someArray = ['hello', 'world'];

Multi-line Arrays

If the line is longer than 80 characters, each element MUST be broken into its own

line, and indented one level. You SHOULD use a trailing comma, as doing so will

simplify adding and removing items into the array, and also results in cleaner git

diffs.

// bad

let fruits = ['apples', 'banana', 'pineapple', 'watermelon', 'mango', 'orange',

'blueberry'];

// good

let fruits = [

 'apples',

 'banana',

 'pineapple',

 'watermelon',

 'mango',

 'orange',

 'blueberry',

];

Back to Top

Strings

Quotes

Although there is no actual difference to how Javascript interprets them, single

quotes MUST be used everywhere, for the sake of uniformity.

// bad

let message = "Hello World";

// good

let message = 'Hello World';

Concatenation

Furthermore, strings are an exception to the 80-character rule: in case a string is

longer than 80 characters, it MUST NOT be written across multiple lines using string

concatenation, because broken strings are harder to work with.

// bad

const errorMessage = 'This is a super long error that was thrown because \

of Batman. When you stop to think about how Batman had anything to do \

with this, you would get nowhere \

fast.';

// bad

const errorMessage = 'This is a super long error that was thrown because ' +

 'of Batman. When you stop to think about how Batman had anything to do ' +

 'with this, you would get nowhere fast.';

// good

const errorMessage = 'This is a super long error that was thrown because of Batman.

When you stop to think about how Batman had anything to do with this, you would get

nowhere fast.';

Template Strings MUST be used when programmatically building up strings, since it

provides a more readable, concise syntax with proper newlines and string interpolation

features.

// bad

function sayHi(name) {

 return 'How are you, ' + name + '?';

}

// also bad

function sayHi(name) {

 return ['How are you, ', name, '?'].join();

}

// good

function sayHi(name) {

 return `How are you, ${name}?`;

}

Back to Top

Comparison Operators & Equality

Comparison Operators

Strict equality operators (=== and ==!) MUST be used when comparing two values, one

MUST NOT use their non-strict counterparts (== and =!). This is because the latter

offer type coercion, which can lead to unexpected errors.

// bad

// this condition is true, because all the values are converted

if (false == null == 0) {

 return "Something's not right..."

}

// good

// this, on the other hand, is false because the values are not converted

if (false === null === 0) {

 return "Problem solved"

}

Equality

Conditional statements, such as the if statement, evaluate their condition using

type coercion, using these rules:

Objects evaluate to true

Undefined evaluates to false

Null evaluates to false

Booleans evaluate to the value of the boolean

Numbers evaluate to false if +0, -0, or NaN, otherwise true

Strings evaluate to false if an empty string '', otherwise true

if ([0] && []) {

 // true

 // an array (even an empty one) is an object, objects will evaluate to true

}

So as a rule of thumb, one MUST use shortcuts for booleans, but MUST NOT use them for

strings or numbers: in this case, use explicit comparisons with the aforementioned

strict equality operators.

// bad

if (isValid === true) {

 // ...

}

// good

if (isValid) {

 // ...

}

// bad

if (name) {

 // ...

}

// good

if (name !== '') {

 // ...

}

// bad

if (collection.length) {

 // ...

}

// good

if (collection.length > 0) {

 // ...

}

Lastly, ternary statements MUST NOT be nested, and MUST be single expressions. In case

multiple conditions need to be evaluated, split them across multiple expressions

// bad

const foo = maybe1 > maybe2

 ? "bar"

 : value1 > value2 ? "baz" : null;

// split into 2 separated ternary expressions

const maybeNull = value1 > value2 ? 'baz' : null;

// better

const foo = maybe1 > maybe2

 ? 'bar'

 : maybeNull;

// best

const foo = maybe1 > maybe2 ? 'bar' : maybeNull;

Back to Top

Functions

Function Declaration

Functions MUST always have a sensible name that summarizes their use, just like

variables. When declaring functions, one MUST NOT declare them in non-function blocks,

like if and while : assign them to a variable outside of the block instead (in this

case it is preferable to use arrow functions instead).

// bad

if (currentUser) {

 function abc() {

 console.log('Nope.');

 }

}

// good

let isUserVerified;

if (currentUser) {

 isUserVerified = () => {

 console.log('Yup.');

 };

}

Function Parameters

Parameters MUST NOT be mutated inside the function. When evaluating conditions on

parameters at the start of a function, use default parameters instead.

// bad

function f1(a) {

 a = 1;

 // ...

}

function f2(a) {

 if (!a) { a = 1; }

 // ...

}

// good

function f3(a) {

 const b = a || 1;

 // ...

}

function f4(a = 1) {

 // ...

}

Default parameters shall also never reference external variables, since that can (and

probably will) introduce bugs. Lastly, default parameters shall be put last.

// bad

// if a is redefined, so will the default parameter

let a = {}

function handleThings(opts = a, name) {

 // ...

}

// still bad

function handleThings(opts = {}, name) {

 // ...

}

// good

function handleThings(name, opts = {}) {

 // ...

}

Back to Top

Arrow Functions

Arrow Functions vs Functions

The use of arrow functions is preferred when creating and calling anonymous functions.

This is better than using normal funcitons, because it is more concise and also

excludes the context of this . Use normal functions when you have complicated logic

that would deserve a named function of its own.

// bad

[1, 2, 3].map(function (x) {

 const y = x + 1;

 return x * y;

});

// good

[1, 2, 3].map((x) => {

 const y = x + 1;

 return x * y;

});

Implicit Returns

If the arrow function consists of a single statement, than you SHOULD omit the braces

and the return statement, and use the implicit return. On the other hand, if the

function spans across multiple lines, one MUST use braces.

// bad

[1, 2, 3].map((number) => {

 const nextNumber = number + 1;

 `A string containing the ${nextNumber}.`;

});

// good

[1, 2, 3].map((number) => `A string containing the ${number + 1}.`);

Style and Consistency Considerations

Also, even when you have a single parameter, one MUST include parentheses around

arguments for clarity and consistency

// bad

[1, 2, 3].map(x => x * x);

// good

[1, 2, 3].map((x) => x * x);

Lastly, when using comparison operators, like <= or >= , wrap the statement in

parentheses, so as to avoid confusion with the arrow syntax.

// bad

const itemHeight = (item) => item.height >= 256 ? item.largeSize : item.smallSize;

// good

const itemHeight = (item) => (item.height <= 256 ? item.largeSize : item.smallSize);

Back to Top

Classes

Class Declaration

The class syntax MUST be used when creating classes. The previous prototype

manipulation tecnique used for creating classes is no longer valid, because class is

more concise and easier to debug. Furthermore, use the extends keyword for

inheritance, instead of the inherits() method.

// bad

const inherits = require('inherits');

function PeekableQueue(contents) {

 Queue.apply(this, contents);

}

inherits(PeekableQueue, Queue);

PeekableQueue.prototype.peek = function () {

 return this.queue[0];

};

// good

class PeekableQueue extends Queue {

 peek() {

 return this.queue[0];

 }

}

Methods & Method Chaining

There MUST NOT be duicate class members, so never give the same name to the same two

properties. Furthermore, when creating setters and getters, consider returning this ,

to help with method chaining.

class Jedi {

 jump() {

 this.jumping = true;

 return this;

 }

 setHeight(height) {

 this.height = height;

 return this;

 }

}

const luke = new Jedi();

// jump and setHeight can be chained because jump() returns `this`

luke.jump()

 .setHeight(20);

Constructors

Classes have a default constructor if one is not specified. This MUST be used when

dealing with empty constructors, or constructors that delegate to the parent class,

because it makes the code less redundant.

// bad

class Jedi {

 constructor() {}

 getName() {

 return this.name;

 }

}

// bad

class Rey extends Jedi {

 constructor(...args) {

 super(...args);

 }

}

// good

class Rey extends Jedi {

 constructor(...args) {

 super(...args);

 this.name = 'Rey';

 }

}

Static Methods

Lastly, if a method doesn't use this , it MUST be made static. Being an instance

method should indicate that it behaves differently based on the properties of the

object it's executed from.

// bad

class Foo {

 bar() {

 console.log('bar');

 }

}

// good

class Foo {

 static bar() {

 console.log('bar');

 }

}

Back to Top

Objects

Object Initialization

When creating a new object, always use the literal syntax rather than the curly braces

syntax. This makes it clearer that you are creating a new object.

// bad

const item = new Object();

// good

const item = {};

Object Shorthands

Shorthands MUST be used when creating methods or when defining properties where the

value variable is the same as the key name. Lastly, when using shorthand properties,

always group them at the beginning of the object notation, in order to make it easier

to tell which properties are using the shorthand.

// bad

const atom = {

 name: name,

 periodicTablePosition: periodicTablePosition,

 weight: 89,

 addValue: function (value) {

 return atom.value + value;

 },

};

// good

const atom = {

 name,

 periodicTablePosition,

 addValue(value) {

 return atom.value + value;

 },

};

Back to Top

Python

For developing the Python back-end we did not create our own coding standard. We have,

instead, opted to adopt the extensive and commonly used PEP8 standard. You can take a

look at the standard's documentation by following this link

Back to Top

https://www.python.org/dev/peps/pep-0008/

