
Architecture and Design

Lezioni alla pari

April 19, 2020

Team Members

Ovidiu Andrioaia

David Cirdan

Luciano Mateias

Zhiyang Xia

Document Control

Change History

Revision Change Date Description of changes

V1.0 04/19/2020 Initial release

Document storage

This document is stored in the project's GIT repository at:

https://github.com/KilliKrate/Software-Documentation-

G6/blob/master/docs/Architecture%20and%20Design/index.md

Document Owner

Group 6 is responsible for developing and maintaining this document.

Table of contents

Introduction

Flow Chart

Logic diagram

High Level Hierarchy

Hierarchy Diagram

Hierarchy Description

Components Classification

Presentation Tier

Business Tier

Data Tier

Process View

Process View Description

https://github.com/KilliKrate/Software-Documentation-G6/blob/master/docs/Architecture%20and%20Design/index.md

Application View

Presentation View

Login View

Registration View

Introduction

The Lezioni alla Pari Architecture Document is designed to illustrate and identify the

high level architecture used to design and implement the Lezioni alla Pari

application. The document contains an overall view of the system hierarchy, logical

views of the system components, and a process view of the system's communication.

Back to Top

Flow Chart

Back to Top

Logic Diagram

Back to Top

High Level Hierarchy

Hierarchy Diagram

Hierarchy Description

The architecture system for the Lezioni alla Pari application is a 3-tier application.

Back to Top

Components Classification

Presentation Tier

Purpose: To display forms, controls, images, videos to the user to create fluid and

efficient user experience.

Specific Nature: The presentation tier will be in charge of displaying appropriate

images, menus and videos to the user. This tier will also be in charge of handling

left and right clicks. When a user clicks a menu on the GUI, the code corresponding to

that event will be called. This tier will also be in charge of the spawning of

appropriate threads. The need of spawning extra threads is due to the fact that the

main thread of the app will be watching for event clicks, but we also need another

thread constantly running to send asynchronous requests to the webserver.

Subcomponents: Quill WYSIWYG editor

Quill WYSIWYG editor - Quill is a text editor that is used whenever a user,

owner of a lesson or a quiz, wants to update it. With Quill we can easily

upload images and videos that will make our lessons more approachable and

intuitive. Styling text and entering formulas are especially useful features.

Business Tier

https://quilljs.com/

Purpose: Processes and responds to events, typically user actions. This tier is in

charge of the heavy algorithm business logic found in complex solutions.

Specific Nature: The Business Tier is the core of our program, it will be in charge of

responding to user requests and to interact with th

Associated Constructs: CourseApplication, CourseFileSystem

CourseApplication - The CourseApplication class will be responsible of

processing data and serving webpages to the presentation tier, it coordinates

all the other classes. This class interacts with almost everything, from

loading html lessons from the filesystem to creating and editing quizzes.

CourseFileSystem - The CourseFileSystem class will be responsible of the

interaction between the application and the filesystem by opening, reading and

writing files in a prestuctured way.

Data Tier

Purpose: This tier is in charge of storing data in persistent storage.

Specific Nature: This tier will consist of XML and JSON files.These together will be

our database management system. There will be 1 XML file named user_data.xml and 2

JSON files named acl.json and descriptor.json.

Associated Constructs: UserManager, PermissionManager, CourseDescriptor

UserManager - UserManager will be used to get, add, update and remove a user in

our platform. Data regarding users will be stored in the file acl.json, this

construct will be in charge of interacting with that file.

Example of user_data.xml

<users usercounter="1">

 <user active="true" id="u-1">

 <name>John</name>

 <surname>Doe</surname>

 <password>johndoe420%</password>

 <email>johndoe@mail.com</email>

 <birthdate>10-10-1990</birthdate>

 </user>

</users>

PermissionManager - PermissionManager will be used to store all the permissions

of one or more user. Read and Write are the types of permissions that can be

given to a user to prevent the access or the modify of a course and its topics

and lessons/quizzes. Data regarding permissions will be stored in the file

acl.json, this construct will be in charge of the interaction with that file.

Example of acl.json

{

 "courses": {

 "c-2": {

 "everyone": false,

 "u-1": "rw"

 },

 "c-4": {

 "everyone": false,

 "u-1": "r"

 }

 }

}

CourseDescriptor - CourseDescriptor will be used to store the current state of

the logical filesystem of courses, topics and lessons/quizzes. This construct

is essential, it works like an inode store in a Linux filesystem. Data

regarding this logical filesystem will be stored in the file descriptor.json,

this construct will be in charge of the interaction with that file.

Example of descriptor.json

{

 "courses counter": 11,

 "topics counter": 20,

 "elements counter": 28,

 "courses": {

 "c-2": {

 "name": "Hello World, but this one is mine",

 "topics": {

 "t-2": {

 "name": "You doing ok?",

 "elements": {

 "e-10": {

 "name": "I think you are",

 "type": "lesson",

 "creation date": "2019-05-

24T23:30:29.271315",

 "edit date": "2019-05-24T23:30:29.271315",

 "delete date": null

 },

 "e-27": {

 "name": "How to make potatoes",

 "type": "quiz",

 "creation date": "2019-09-

08T14:04:41.965836",

 "edit date": "2019-09-08T14:04:41.965836",

 "delete date": null

 }

 },

 "creation date": "2019-05-24T23:30:24.424276",

 "delete date": null

 },

 "t-19": {

 "name": "New Topic!?!?!?!",

 "elements": {

 "e-22": {

 "name": "Hey",

 "type": "lesson",

 "creation date": "2019-09-

04T18:12:59.636303",

 "edit date": "2019-09-04T18:12:59.636303",

 "delete date": null

 },

 "e-23": {

 "name": "test",

 "type": "lesson",

 "creation date": "2019-09-

08T12:06:19.076754",

 "edit date": "2019-09-08T12:06:19.076754",

 "delete date": null

 }

 },

 "creation date": "2019-09-04T18:01:46.662281",

 "delete date": null

 }

 },

 "creation date": "2019-05-24T23:29:36.936242",

 "delete date": null

 },

 }

}

Back to Top

Process View

Process View Description

The Process View is essential in understanding how the separate components and

subcomponents communicate with each other in a concurrent application. By better

understanding the communication between components, it may be possible to optimize the

data flow and storage of the application, as well as ensuring thread-safety.

Application View

This view is the main application view that is created at runtime of the program. The

program creates the view: this is not a user created view. This view handles the basic

program flow by controlling navigation between items, videos, quizzes, including the

handling of user input to the graphical forms.

Presentation View

This view is user created, when the application enters the Course/Topic/Lesson

management mode. This view is the main one, responsible for almost every action in the

application. From this view an authorized user, based on its permissions, can create

an item on the platform and give read and write access to other users.

Login View

This view is created when opening the application. This view manages the login, and

the registration if needed, of users in order to give them the proper authorizations.

Registration View

This view is user created, when the users chooses to create a new account from the

Login view. This view handles the basic operations of creating a new user on the

platform.

Back to Top

